Skip to main content
Log in

Antitragus Suppresses Fundamental Harmonic Pulse in a Horseshoe Bat, Rhinolophus Sinicus

  • Technical Note
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

The biosonar system of bats utilizes physical baffle shapes around the sites of ultrasound reception for diffraction-based amplitude modulation. Bat antitragus has been hypothesized to affect the bat biosonar. Using numerical methods, we show that the antitragus of a Chinese horseshoe bat has an effect on increasing the acoustic near field as well as enhancing the reflection coefficient of the external ear. The simulation result provides a direct link between the biosonar signal and the morphological structure. The underlying physical mechanism suggested by the properties of the effect is that standing waves are produced between the pinna and antitragus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Yin, X.Y., Müller, R.: Fast moving bat ears create informative doppler shifts. Proc. Natl. Acad. Sci. U. S. A. 116(25), 12270–12274 (2019)

    Article  Google Scholar 

  2. Reijniers, J., Vanderelst, D., Peremans, H.: Morphology induced information transfer in bat sonar. Phys. Rev. Lett. 105(14), 148701 (2010)

    Article  Google Scholar 

  3. Müller, R., Gupta, A.K., Zhu, H., Pannala, M., Gillani, U.S., Fu, Y., Caspers, P., Buck, J.R.: Dynamic substrate for the physical encoding of sensory information in bat biosonar. Phys. Rev. Lett. 118(15), 158102 (2017)

    Article  Google Scholar 

  4. Hill, J.E., Smith, J.D.: Bats: a Natural History. University of Texas Press, Austin (1984)

    Google Scholar 

  5. Simmons, N.B., Cirranello, A.L.: Bat Species of the World. A Taxonomic and Geographic Database. For More Information, See https://batnames.org/, (2020)

  6. Müller, R.: A numerical study of the role of the tragus in the big brown bat. J. Acoust. Soc. Am. 116(6), 3701–3712 (2004)

    Article  Google Scholar 

  7. Chiu, C., Moss, C.F.: The role of the external ear in vertical sound localization in the free flying bat. Eptesicus fuscus. J. Acoust. Soc. Am. 121(4), 2227–2235 (2007)

    Article  Google Scholar 

  8. Pannala, M., Meymand, S.Z., Müller, R.: Interplay of static and dynamic features in biomimetic smart ears. Bioinspir. Biomi. 8(2), 026008 (2013)

    Article  Google Scholar 

  9. Müller, R., Feng, L., Pannala, M.: Bat biosonar as an inspiration for dynamic sensing. In: Raúl J. Martín-Palma, A.L. (ed.) Proc. of SPIE, p. 868601. SPIE, California (2013)

  10. Zhuang, Q., Wang, X.M., Li, M.X., Mao, J., Wang, F.X.: Noseleaf pit in egyptian slit-faced bat as a doubly curved reflector. EPL 97(4), 44001 (2012)

    Article  Google Scholar 

  11. Sheen, D.M., Ali, S.M., Abouzahra, M.D., Kong, J.A.: Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits. IEEE Trans. Ultrason. Ferroelectr. Freq Control 38(7), 849–857 (1990)

    Google Scholar 

  12. Neuweiler, G., Metzner, W., Heilmann, U., Rübsamen, R., Eckrich, M., Costa, H.H.: Foraging behaviour and echolocation in the rufous horseshoe bat (rhinolophus rouxi) of Sri Lanka. Behav. Ecol. Sociobiol. 20, 53–67 (1987). https://doi.org/10.1007/bf00292166

    Article  Google Scholar 

  13. Tian, B., Schnitzler, H.-U.: Echolocation signals of the greater horseshoe bat ( rhinolophus ferrumequinum) in transfer flight and during landing. J. Acoust. Soc. Am. 101(4), 2347–2364 (1997)

    Article  Google Scholar 

  14. Jones, G., Teeling, E.C.: The evolution of echolocation in bats. Trends Ecol. Evol. 21(3), 149–156 (2006)

    Article  Google Scholar 

  15. Zhuang, Q., Müller, R.: Numerical study of the effect of the noseleaf on beamforming in a horseshoe bat. Phys. Rev. E 76(05), 051902 (2007)

    Article  Google Scholar 

  16. Tree, H.L.V.: Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons Inc, New York (2002)

    Google Scholar 

  17. Sullivan, D.M.: Electromagnetic Simulation Using the FDTD Method. IEEE Press, New York (2000)

    Book  Google Scholar 

  18. Berenger, J.P.: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127, 363–379 (1996). https://doi.org/10.1006/jcph.1996.0181

    Article  MathSciNet  MATH  Google Scholar 

  19. Yuan, X.J., Borup, D., Wiskin, J.W., Berggren, M., Eidens, R., Johnson, S.A.: Formulation and validation of berenger’s pml absorbing boundary for the fdtd simulation of acoustic scattering. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(4), 816–22 (1997)

    Article  Google Scholar 

  20. Beranek, L.L.: Acoustical Measurements. Acoustical Society of America, Woodbury (1988)

    Google Scholar 

  21. McNames, J.: An effective color scale for simultaneous color and gray-scale publications. IEEE Signal Process Mag. 23(1), 82–87 (2006)

    Article  Google Scholar 

  22. Kraus, J.D., Marhefka, R.J.: Antennas: For All Applications. McGraw-Hill, New York (2008)

    Google Scholar 

  23. Breazeale, M.A., McPherson, M.: Physical acoustics. In: Rossing, T.D. (ed.) Springer Handbook of Acoustics, pp. 207–238. Springer, New York (2014)

    Google Scholar 

  24. Grinnell, A.D.: Hearing in bats: An overview. In: Popper, A.N., Fay, R.R. (eds.) Hearing by Bats, pp. 16–17. Springer, New York (1995)

    Google Scholar 

  25. Suga, N.: Biosonar and neural computation in bats. Sci. Am. 262, 60–68 (1990). https://doi.org/10.1038/scientificamerican0690-60

    Article  Google Scholar 

  26. Hartley, D.J., Suthers, R.A.: The acoustics of the vocal tract in the horseshoe bat. Rhinolophus hildebrandti. J. Acoust. Soc. Am. 84(4), 1201–1913 (1988)

    Article  Google Scholar 

  27. Gupta, A.K., Müller, R., Webster, D.: Entropy analysis of frequency and shape change in horseshoe bat biosonar. Phys. Rev. E 97(06), 062402 (2018)

    Article  Google Scholar 

  28. Csorba, G., Ujhelyi, P., Thomas, N.: Horseshoe Bats of the World. Alana Books, Shropshire (2003)

    Google Scholar 

  29. Zhuang, Q., Müller, R.: Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam. Phys. Rev. Lett. 97(21), 218701 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Project Nos. 11374193 and 10974222).

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11374193 and 10974222). All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Qiao Zhuang, Wen-Xiu Zhai, Fu-Xun Wang and Rui-Wen Kong. The first draft of the manuscript was written by Qiao Zhuang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiao Zhuang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 117284 KB)

Supplementary file 2 (mp4 117284 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Q., Zhai, WX., Wang, FX. et al. Antitragus Suppresses Fundamental Harmonic Pulse in a Horseshoe Bat, Rhinolophus Sinicus. Acoust Aust 51, 107–113 (2023). https://doi.org/10.1007/s40857-022-00278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-022-00278-1

Keywords

Navigation